Step of Proof: decidable__atom_equal
9,38
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
decidable
atom
equal
:
1.
a
: Atom
2.
b
: Atom
if
a
=
b
then inl Ax else (inr (
x
.
x
) )
((
a
=
b
)
(
(
a
=
b
)))
latex
by MemberEqCD
latex
1
: .....subterm..... T:t1:n
1:
a
Atom
2
: .....subterm..... T:t2:n
2:
b
Atom
3
: .....subterm..... T:t3:n
3:
3.
a
=
b
3:
(inl Ax )
((
a
=
b
)
(
(
a
=
b
)))
4
: .....subterm..... T:t4:n
4:
3.
(
a
=
b
)
4:
(inr (
x
.
x
) )
((
a
=
b
)
(
(
a
=
b
)))
.
Definitions
t
T
,
P
Q
,
False
,
A
origin